organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Anthracen-9-yl)(piperidin-1-yl)methanone

Hua-You Hu,^a* Yu-Cheng Huang,^b Hai-Tao Yu^b and Yan Zhang^b

^aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: huayouhu@seu.edu.cn

Received 5 September 2008; accepted 13 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.081; wR factor = 0.278; data-to-parameter ratio = 13.9.

The title compound, C₂₀H₁₉NO, is a substructure of CP-640186, a potent inhibitor of mammalian acetyl-coenzyme A carboxylases. In the crystal structure, the amide group forms a dihedral angle of $87.0 (1)^{\circ}$ with the plane of the anthracene unit and the piperidine ring adopts a chair conformation. Molecules are arranged into layers parallel to (100) and adjacent anthracene units within layers form dihedral angles of 13.2 (1)°. C-H···O interactions from the piperidine rings to the C=O group of the amide are observed between layers.

Related literature

For further information regarding CP-640186, see: Harwood et al. (2003); Zhang et al. (2004).

Experimental

Crystal data

$C_{20}H_{19}NO$	$V = 3069.5 (14) \text{ Å}^3$
$M_r = 289.36$	Z = 8
Monoclinic, C2/c	Mo $K\alpha$ radiation
a = 26.393 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 7.3950 (15) Å	T = 293 (2) K
c = 18.213 (4) Å	$0.30 \times 0.10 \times 0.10$ mm
$\beta = 120.29 \ (3)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.977, \ T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	199 parameters
$wR(F^2) = 0.278$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
2762 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

2828 measured reflections

 $R_{\rm int} = 0.025$

2762 independent reflections

1678 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °)

,8	 8).		
$D - H \cdot \cdot \cdot A$		D-H		$H \cdot \cdot \cdot A$	

 $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $C17 - H17B \cdot \cdot \cdot O1^{i}$ 0.97 2.41 3.342 (5) 162 C20-H20A···O1ⁱⁱ 0.97 3.557 (5) 146 2.71

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Natural Science Foundation of Jiangsu Province (grant No. BK2007132).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2300).

References

Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Harwood, H. J., Petras, S. F., Shelly, L. D., Zaccaro, L. M., Perry, D. A., Makowski, M. R., Hargrove, D. M., Martin, K. A., Tracey, W. R., Chapman, J. G., Magee, W. P., Dalvie, D. K., Soliman, V. F., Martin, W. H., Mularski, C. J. & Eisenbeis, S. A. (2003). J. Biol. Chem. 278, 37099-37111.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, H.-L., Tweel, B., Li, J. & Tong, L. (2004). Structure, 12, 1683-1691.

supplementary materials

Acta Cryst. (2008). E64, o2120 [doi:10.1107/S1600536808033205]

(Anthracen-9-yl)(piperidin-1-yl)methanone

H.-Y. Hu, Y.-C. Huang, H.-T. Yu and Y. Zhang

Comment

Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to affect favourably the multitude of cardiovascular risk factors associated with the metabolic syndrome. Recent findings reported by Pfizer researchers show that the isozyme-nonselective ACC inhibitor CP-640186 inhibits both the lipogenic tissue isozyme (ACC1) and the oxidative tissue isozyme (ACC2) (Harwood *et al.*, 2003). The title compound is a sub-structure of CP-640186 (see Zhang *et al.*, 2004).

Experimental

A mixture of 9-carbonyl anthracene (1 mmol) and piperidine (1.2 mmol) with 1.5 mmol DCC (DCC = N,N-dicyclohexylcarbodiimide) was stirred in 5 ml CH₂Cl₂ at room temperature for 1 h to yield the title compound. Crystals were obtained from acetone/petroleum ether.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.

(Anthracen-9-yl)(piperidin-1-yl)methanone

Crystal data $C_{20}H_{19}NO$ $M_r = 289.36$ Monoclinic, C2/cHall symbol: -C 2yc a = 26.393 (5) Å

 $F_{000} = 1232$ $D_x = 1.252 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 781 reflections $\theta = 2.4-28.0^{\circ}$

<i>b</i> = 7.3950 (15) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 18.213 (4) Å	T = 293 (2) K
$\beta = 120.29 \ (3)^{\circ}$	Block, yellow
$V = 3069.5 (14) \text{ Å}^3$	$0.30 \times 0.10 \times 0.10 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEX CCD diffractometer	2762 independent reflections
Radiation source: fine-focus sealed tube	1678 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 293(2) K	$\theta_{\text{max}} = 25.2^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -31 \rightarrow 27$
$T_{\min} = 0.977, \ T_{\max} = 0.992$	$k = 0 \rightarrow 8$
2828 measured reflections	$l = 0 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.081$	H-atom parameters constrained
$wR(F^2) = 0.278$	$w = 1/[\sigma^2(F_o^2) + (0.1523P)^2 + 2.2222P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2762 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Partia stien competions none

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

y

x

Ζ

 $U_{\rm iso}*/U_{\rm eq}$

C1	0.83354 (17)	0.1537 (5)	0.6866 (3)	0.0733 (11)
H1A	0.8709	0.1589	0.6936	0.088*
C2	0.78453 (17)	0.1309 (5)	0.6048 (3)	0.0680 (10)
H2A	0.7896	0.1254	0.5579	0.082*
C3	0.72989 (15)	0.1169 (5)	0.5938 (2)	0.0577 (9)
H3A	0.6980	0.0993	0.5394	0.069*
C4	0.72079 (13)	0.1286 (4)	0.66384 (19)	0.0472 (8)
C5	0.77079 (14)	0.1544 (4)	0.7464 (2)	0.0504 (8)
C6	0.82684 (15)	0.1679 (5)	0.7541 (2)	0.0611 (9)
H6A	0.8596	0.1871	0.8074	0.073*
C7	0.66500 (13)	0.1159 (4)	0.65502 (19)	0.0480 (8)
C8	0.65705 (14)	0.1315 (4)	0.7257 (2)	0.0478 (8)
C9	0.70746 (15)	0.1503 (4)	0.8081 (2)	0.0534 (8)
C10	0.76293 (14)	0.1644 (4)	0.8162 (2)	0.0538 (9)
H10A	0.7956	0.1809	0.8699	0.065*
C11	0.60162 (16)	0.1229 (5)	0.7191 (3)	0.0626 (10)
H11A	0.5682	0.1098	0.6658	0.075*
C12	0.59630 (19)	0.1335 (5)	0.7889 (3)	0.0751 (12)
H12A	0.5591	0.1308	0.7826	0.090*
C13	0.6455 (2)	0.1485 (5)	0.8706 (3)	0.0718 (11)
H13A	0.6409	0.1535	0.9180	0.086*
C14	0.69916 (19)	0.1556 (5)	0.8799 (2)	0.0677 (10)
H14A	0.7317	0.1642	0.9343	0.081*
C15	0.61267 (14)	0.0678 (5)	0.5689 (2)	0.0524 (8)
C16	0.59033 (17)	0.3956 (5)	0.5392 (2)	0.0693 (11)
H16A	0.6271	0.4108	0.5922	0.083*
H16B	0.5593	0.4463	0.5465	0.083*
C17	0.5933 (2)	0.4948 (6)	0.4705 (3)	0.0870 (13)
H17A	0.6274	0.4549	0.4680	0.104*
H17B	0.5975	0.6232	0.4831	0.104*
C18	0.5372 (2)	0.4617 (6)	0.3833 (3)	0.0848 (13)
H18A	0.5036	0.5164	0.3828	0.102*
H18B	0.5416	0.5166	0.3384	0.102*
C19	0.52736 (19)	0.2577 (7)	0.3679 (2)	0.0861 (13)
H19A	0.4905	0.2372	0.3156	0.103*
H19B	0.5585	0.2072	0.3607	0.103*
C20	0.52607 (17)	0.1630 (6)	0.4382 (2)	0.0798 (12)
H20A	0.4917	0.2008	0.4406	0.096*
H20B	0.5233	0.0337	0.4281	0.096*
N1	0.57930 (13)	0.2033 (4)	0.51987 (17)	0.0652 (9)
01	0.60244 (11)	-0.0901 (3)	0.54889 (16)	0.0754 (9)
	<u> </u>			
Atomic displacement	nt parameters $(Å^2)$			

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.058 (2)	0.078 (3)	0.090 (3)	0.0004 (18)	0.042 (2)	0.008 (2)
C2	0.076 (3)	0.071 (2)	0.071 (2)	0.0052 (19)	0.048 (2)	0.0061 (19)
C3	0.059 (2)	0.063 (2)	0.0532 (19)	0.0000 (16)	0.0293 (17)	0.0003 (15)

supplementary materials

C4	0.0487 (18)	0.0408 (16)	0.0483 (18)	0.0024 (13)	0.0216 (15)	0.0022 (13)
C5	0.0448 (17)	0.0440 (17)	0.0513 (18)	0.0004 (13)	0.0160 (15)	0.0049 (14)
C6	0.0438 (19)	0.060 (2)	0.068 (2)	0.0006 (15)	0.0189 (17)	-0.0010 (17)
C7	0.0475 (18)	0.0449 (18)	0.0438 (17)	0.0006 (13)	0.0173 (14)	0.0000 (13)
C8	0.0527 (19)	0.0420 (17)	0.0519 (18)	-0.0014 (13)	0.0286 (16)	0.0008 (13)
C9	0.059 (2)	0.0469 (18)	0.0481 (18)	0.0035 (15)	0.0229 (16)	-0.0049 (14)
C10	0.0507 (19)	0.0506 (19)	0.0459 (18)	0.0015 (14)	0.0139 (15)	0.0006 (14)
C11	0.059 (2)	0.062 (2)	0.071 (2)	-0.0058 (16)	0.0350 (19)	-0.0031 (17)
C12	0.078 (3)	0.077 (3)	0.093 (3)	-0.001 (2)	0.060 (3)	-0.002 (2)
C13	0.099 (3)	0.070 (2)	0.068 (2)	0.011 (2)	0.058 (2)	0.0023 (19)
C14	0.084 (3)	0.068 (2)	0.054 (2)	-0.0005 (19)	0.036 (2)	-0.0040 (17)
C15	0.0497 (18)	0.057 (2)	0.0485 (18)	-0.0007 (15)	0.0238 (15)	-0.0044 (16)
C16	0.070 (2)	0.066 (2)	0.057 (2)	0.0051 (18)	0.0207 (19)	-0.0063 (18)
C17	0.112 (4)	0.063 (3)	0.085 (3)	0.003 (2)	0.049 (3)	0.003 (2)
C18	0.110 (3)	0.076 (3)	0.064 (2)	0.013 (2)	0.040 (2)	0.016 (2)
C19	0.086 (3)	0.103 (4)	0.050 (2)	-0.007 (2)	0.020 (2)	-0.003 (2)
C20	0.060 (2)	0.092 (3)	0.058 (2)	-0.012 (2)	0.0075 (19)	0.003 (2)
N1	0.0575 (18)	0.0608 (19)	0.0531 (17)	-0.0090 (14)	0.0100 (14)	0.0008 (14)
O1	0.0812 (19)	0.0499 (15)	0.0646 (16)	-0.0093 (12)	0.0144 (14)	-0.0150 (12)

Geometric parameters (Å, °)

C1—C6	1.333 (5)	C12—H12A	0.930
C1—C2	1.406 (5)	C13—C14	1.339 (6)
C1—H1A	0.930	C13—H13A	0.930
C2—C3	1.356 (5)	C14—H14A	0.930
C2—H2A	0.930	C15—O1	1.213 (4)
C3—C4	1.415 (4)	C15—N1	1.336 (4)
С3—НЗА	0.930	C16—N1	1.458 (5)
C4—C7	1.401 (4)	C16—C17	1.486 (6)
C4—C5	1.427 (4)	C16—H16A	0.970
C5—C10	1.389 (5)	C16—H16B	0.970
C5—C6	1.417 (5)	C17—C18	1.549 (6)
С6—Н6А	0.930	C17—H17A	0.970
С7—С8	1.409 (4)	С17—Н17В	0.970
C7—C15	1.519 (4)	C18—C19	1.532 (6)
C8—C11	1.407 (5)	C18—H18A	0.970
C8—C9	1.424 (5)	C18—H18B	0.970
C9—C10	1.399 (5)	C19—C20	1.476 (6)
C9—C14	1.433 (5)	C19—H19A	0.970
C10—H10A	0.930	С19—Н19В	0.970
C11—C12	1.351 (5)	C20—N1	1.472 (4)
C11—H11A	0.930	C20—H20A	0.970
C12—C13	1.401 (6)	C20—H20B	0.970
C6—C1—C2	120.5 (3)	C13—C14—C9	121.5 (4)
C6—C1—H1A	119.7	C13—C14—H14A	119.3
C2—C1—H1A	119.7	C9—C14—H14A	119.3
C3—C2—C1	120.5 (4)	O1—C15—N1	123.3 (3)
С3—С2—Н2А	119.8	O1—C15—C7	119.0 (3)

C1—C2—H2A	119.8	N1—C15—C7	117.7 (3)
C2—C3—C4	120.9 (3)	N1-C16-C17	111.5 (3)
С2—С3—НЗА	119.5	N1—C16—H16A	109.3
С4—С3—НЗА	119.5	С17—С16—Н16А	109.3
C7—C4—C3	122.6 (3)	N1-C16-H16B	109.3
C7—C4—C5	119.3 (3)	С17—С16—Н16В	109.3
C3—C4—C5	118.1 (3)	H16A—C16—H16B	108.0
C10—C5—C6	122.4 (3)	C16—C17—C18	110.9 (4)
C10C5C4	119.0 (3)	С16—С17—Н17А	109.5
C6—C5—C4	118.6 (3)	C18—C17—H17A	109.5
C1—C6—C5	121.4 (3)	С16—С17—Н17В	109.5
С1—С6—Н6А	119.3	С18—С17—Н17В	109.5
С5—С6—Н6А	119.3	H17A—C17—H17B	108.0
C4—C7—C8	121.4 (3)	C19—C18—C17	109.2 (3)
C4—C7—C15	119.3 (3)	C19-C18-H18A	109.8
C8—C7—C15	119.0 (3)	C17-C18-H18A	109.8
C11—C8—C7	123.0 (3)	C19—C18—H18B	109.8
C11—C8—C9	118.2 (3)	C17—C18—H18B	109.8
С7—С8—С9	118.7 (3)	H18A—C18—H18B	108.3
С10—С9—С8	119.4 (3)	C20—C19—C18	112.6 (4)
C10—C9—C14	122.4 (3)	С20—С19—Н19А	109.1
C8—C9—C14	118.2 (3)	C18—C19—H19A	109.1
C5—C10—C9	122.0 (3)	С20—С19—Н19В	109.1
C5-C10-H10A	119.0	C18—C19—H19B	109.1
C9—C10—H10A	119.0	H19A—C19—H19B	107.8
C12—C11—C8	120.9 (4)	N1—C20—C19	110.7 (3)
C12—C11—H11A	119.5	N1—C20—H20A	109.5
C8—C11—H11A	119.5	C19—C20—H20A	109.5
C11—C12—C13	121.6 (4)	N1—C20—H20B	109.5
C11—C12—H12A	119.2	C19—C20—H20B	109.5
C13—C12—H12A	119.2	H20A—C20—H20B	108.1
C14—C13—C12	119.5 (4)	C15—N1—C16	125.9 (3)
C14—C13—H13A	120.3	C15—N1—C20	119.7 (3)
C12—C13—H13A	120.3	C16—N1—C20	114.4 (3)
C6—C1—C2—C3	-2.2 (6)	C8—C9—C10—C5	-2.3 (5)
C1—C2—C3—C4	1.3 (5)	C14—C9—C10—C5	178.3 (3)
C2—C3—C4—C7	179.6 (3)	C7—C8—C11—C12	178.1 (3)
C2—C3—C4—C5	-0.4 (5)	C9—C8—C11—C12	0.5 (5)
C7—C4—C5—C10	0.7 (4)	C8—C11—C12—C13	-1.7 (6)
C3—C4—C5—C10	-179.3 (3)	C11—C12—C13—C14	1.1 (6)
C7—C4—C5—C6	-179.7 (3)	C12—C13—C14—C9	0.7 (6)
C3—C4—C5—C6	0.3 (4)	C10—C9—C14—C13	177.5 (3)
C2—C1—C6—C5	2.2 (6)	C8—C9—C14—C13	-1.9 (5)
C10—C5—C6—C1	178.4 (3)	C4—C7—C15—O1	84.2 (4)
C4—C5—C6—C1	-1.2 (5)	C8—C7—C15—O1	-90.4 (4)
C3—C4—C7—C8	-178.8 (3)	C4—C7—C15—N1	-97.4 (4)
C5—C4—C7—C8	1.2 (4)	C8—C7—C15—N1	88.0 (4)
C3—C4—C7—C15	6.7 (5)	N1—C16—C17—C18	54.6 (5)
C5—C4—C7—C15	-173.3 (3)	C16—C17—C18—C19	-53.5 (5)

supplementary materials

C4—C7—C8—C11	178.8 (3)	C17—C18—C19—C20	53.9 (5)
C15—C7—C8—C11	-6.7 (5)	C18—C19—C20—N1	-54.1 (5)
C4—C7—C8—C9	-3.6 (4)	O1-C15-N1-C16	-177.9 (4)
C15—C7—C8—C9	170.9 (3)	C7-C15-N1-C16	3.7 (5)
C11—C8—C9—C10	-178.2 (3)	O1-C15-N1-C20	2.1 (5)
C7—C8—C9—C10	4.1 (4)	C7-C15-N1-C20	-176.3 (3)
C11—C8—C9—C14	1.3 (4)	C17—C16—N1—C15	124.0 (4)
C7—C8—C9—C14	-176.5 (3)	C17—C16—N1—C20	-56.0 (5)
C6—C5—C10—C9	-179.8 (3)	C19—C20—N1—C15	-125.0 (4)
C4—C5—C10—C9	-0.1 (5)	C19—C20—N1—C16	55.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C17—H17B···O1 ⁱ	0.97	2.41	3.342 (5)	162
C20—H20A···O1 ⁱⁱ	0.97	2.71	3.557 (5)	146
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1, -y, -z+1$.				

Fig. 1